

The Evolution of OLEDs

- 1. Multilayer OLEDs structure requires nanometer thickness to work!
- 2. A good interfacial energy alignment is necessary to reduce driving voltage

Now at University of Rochester

Professor emeritus New York University

Structure of OLED and the Origin of Electroluminescence

Charge-Injection and Charge-Transport in OLEDs

Alignment of energy levels among electrodes and organic materials

多層薄膜狀態,每層厚度不到 0.0001公分 Multilayer thin-film structure of which thickness is less

than 1 μm

OLED display can be flexible

厚度至少為0.1公分,且非連續性薄膜。A microscopic layer of crystalline block materials (thickness greater than 0.1 cm) grown by epitaxial doping process

三種最常見到的平面顯示器技術

Common Flat Panel Display Technologies

不同驅動法之LCD與OLED之比較

Comparison of LCD and OLED with different driving method

Heterocyclic Compounds as Electron-Transporting and/or Light Emitting Materials

to be reduced and hence suitable for electron transport

facilitating electron transport

Morphological stability (and device stability) of amorphous thin films

Differential Scanning Calorimetry (DSC)

Issues Important for OLEDs

Reliability (operation lifetime) 壽命

10000 (polymeric film) ~ 100000 (molecular film) hours @ 200 cdm⁻² Encapsulation problems:

H₂O and O₂ from air damage OLED devices

Electrode problems:

Charge-injection interface barrier

Diffusion and degradation of ITO anode and metal cathode)

Material problems:

Crystallization (Low T_g) of molecular materials

Color tuning of light-emitting materials 色彩

 π -conjugation length and donor-acceptor approaches Red (R), green (G), and blue (B) for full color displays B + yellow (or orange) for two color white OLED lighting B + G + R for three color white OLED lighting

Efficiency (photon/electron) 效率

<5% (*fluorescence-based*) compared to >10% of commercial light bulbs Phosphorescence materials are necessary particularly in the white OLED lighting application

Units of OLED Efficiency

- **External Quantum Efficiency (%)** = (Photon# / Electron#) • 100%
 - Luminance Efficiency (cd/A) (Photometric Efficiency, Current Efficiency)

Power Efficiency (lm/W)

Luminance (L) : cd/m² Current density (J) : mA/cm² Current (I): Amp (A) Watt (W): $W = I \bullet V$ $Im/W = (\pi \bullet cd)/(I \bullet V) = \pi/V \bullet cd/I$ $Im = \pi \bullet cd$ $= \pi/\mathbf{V} \bullet \mathbf{cd}/(\mathbf{J} \bullet \mathbf{cm}^2 \bullet \mathbf{1000})$

 $= \pi/V \bullet cd/(J \bullet m^2/10000 \bullet 1000) = \pi/V \bullet cd/(J \bullet m^2/10)$

Theoretical External Quantum Efficiency (η_{EXT} or EQE) of OLEDs

$$\eta_{\text{EXT}} = \alpha \cdot \gamma \cdot \eta_r \cdot \psi_{pl}$$

 α : Light output coupling factor $\alpha = 1/(2n^2) \approx 20\%$ *n*: refractive index of the emission medium $(n = 1.7 \text{ in Alq}_3\text{-based devices})$ γ : Probability of carrier recombination (charge balance factor) maximum $\gamma \sim 100\%$ $\oplus \oplus \oplus \oplus$ $\alpha(1)\alpha(2)$ η_r : Production efficiency of an exciton 75% triplete state → $\beta(1)\beta(2)$ 25% for singlet-state (fluorescence) $\sigma_{+} = \alpha(1)\beta(2) + \alpha(2)\beta(1)$ 25% singlete state $\rightarrow \sigma_{-} = \alpha(1)\beta(2) - \alpha(2)\beta(1)$ 75% for triplet-state (phosphorescence) Triplet state: symmetry is not changed by exchange spin label Singlet sate: symmetry is changed by exchange spin label

 φ_{pl} : Fluorescence or phosphorescence (photoluminescence, PL) quantum yields 50% ~100% for most organic compounds

T. Tsutsui, MRS Bull. 1997, 22(6), 39.

Maximum η_{EXT} is_

2.5%~5% for fluorescent materials7.5%~15% for phosphorescent materials

Light-Emitting Materials of OLED

Jablonski Diagram

Fluorescence Quantum Yield (Φ_F) and Fluorescence lifetime (τ_F)

Molecular Structure and Fluorescence Quantum Yield Φ_F

Fluorescence Quenching in Solid State

The Chemical Approach in Achieving Red Fluorescence

Fluorescence of Non-Dopant Red Fluorophores and OLEDs

Solution (CH₂Cl₂) Solid

Solid Solution (CH₂Cl₂)

BCP TPBI MgAg

ITO-Coated Glass

NPAFN or **NPAMLMe** 1931 CIE Chromaticity Diagram 0.30 0.60 0.15 0.06 0.3127 NPAFN NPAMLMe 02 01 0 0.1 0.3 0.4 0.5 0.6 0.7 0.2

ITO/NPAMLMe or NPAFN/BCP/TPBI/Mg:Ag

OLED performance	NPAMLMe	NPAFN
$\lambda_{\max}^{EL}(nm)$	650	634
1931 CIE (<i>x</i> , <i>y</i>)	(0.66, 0.33)	(0.64, 0.33)
Maximum Efficiency (η_{EQE})	2.4%	2.4%
η_{EQE} @ 20 mA/cm ²	2.3%	2.3%
Maximum Intensity	8000 cd/m ²	10000 cd/m^2
Intensity @ 20 mA/cm ²	300 cd/m ²	460 cd/m ²

Wu, W.-C.; Yeh, H.-C.; Chan, L.-H.; Chen, C.-T.Adv. Mater. 2002, 14, 1072. Yeh, H.-C.; Yeh, S.-J.; Chen, C.-T. Chem. Commun. 2003, 2632.

Structural Hindrance Prevents Fluorophores from Close Contact (via π - π Interaction) in the Solid State

A molecular design strategy in preventing fluorophores from emission quenching in the solid state

Chan, L.-H.; Huang, C.-H.; Tsai, Z.-W.; Chen, C.-T. Org. Lett. 2003, 5, 1261.

Fine Tuning Color of Alq₃

Electron donor-acceptor approach

Burrows, P. E.; Shen, Z.; Bulovic, V.; McCarty, D. M.; Forrest, S. R.; Thompson, M. E. J. Appl. Phys. **1996**, 79, 7991 Chen, C. H.; Shi, J. Coord. Chem. Rev. **1998**, 171, 161.

Electron-poor Ar substituents $MeO \rightarrow N \rightarrow OMe \xrightarrow{F} F \xrightarrow{F} O \xrightarrow{CN} \xrightarrow{O} OH \xrightarrow{C} OH \xrightarrow{C} OH \xrightarrow{O} OH \xrightarrow{C} OH \xrightarrow{O} OH \xrightarrow{O$

Electron-rich Ar substituents:

R. Pohl, V.A. Montes,[†] J. Shinar, P. Anzenbacher Jr. *J. Org. Chem.* **2004**, *69*, 1723.

Tuning of Energy Gap by Donor and Acceptor

Electronic donor always raises the energy level
 Electronic acceptor always lowers the energy level

Resonance Effect

Electron donor Electron acceptor

Inductive Effect

Electron donor Electron acceptor

High electron negativity atom (high electron affinity atom)

Heterocyclic Compounds as Electron-Transporting Materials for OLED

White Light Illuminating and Energy 白光照明與能源

Lighting accounts for approximately 22% of the electricity consumed in buildings in the US, with 40% of that amount consumed by inefficient (~15 lm/W) incandescent lamps.

The latest entrant to the lighting market is the pea-size

light-emitting diode (LED). LEDs can last as long as ten

years, but use less than 25% electric power of tungsten

(incandescent) light bulbs. However, LED lighting is much

Nature, 2006, 440, 908.

THE END OF THE

LIGHT BULB

Global warming, ever-expanding energy demand

pave way for NEW LIGHTING TECHNOLOGIES

JEFF JOHNSON, C&EN WASHINGTON

businesses, 27% is for homes, 14%

applications, according to the De-

partment of Energy. About \$58 bil-

Since homes remain highly de-

pendent on inefficient incandescent

lighting, residences are responsible for

the greatest amount of wasted energy.

They also have the biggest potential for

savings, however, thanks to alternatives

disrupt the definition of lighting.

to traditional bulbs, which are growing in

availability and impact. These bulbs could

Compact fluorescent lights (CFLs) draw

only about 20 to 25% of the energy of incan-

descent bulbs for a comparable amount of

light generated. Although they cost about

four times more, CFLs last 10 times longer

than incandescent bulbs and make back

their price severalfold in energy savings

Solid-state technologies are coming

on too, with light-emitting diodes (LEDs)

finding growing general lighting applica-

tions. LEDs are as efficient as CFLs and

and extended life.

Residential lighting

lion a year is spent on lighting.

for industry, and 8% for outdoor

HEAT, NOT LIGHT Incandescent lights define household lighting. Dependable, familiar and based on a 100year-old technology, incandescents last for up to 1,000 hours, cost 50 cents, and waste 95% of their output energy as heat, not illumination

filament, enclosed and protected in a glass bulb. Cheap, simple, easy to

last for decades but are now too expensive install, and manufactured by to compete on all fronts with a light bulb. the billions, the incandescent light Organic light-emitting diodes (OLEDs) are waiting in the wings, providing a thin sheet nately, 90 to 95% of the energy it consumes of pure white light. AT THEIR CORE, CFLs and LEDs are completely different technologies from that of time of increasing concern over climate incandescent bulbs. They do not rely on change-when electrical power generation incandescence or intense heat to produce visible light. Instead, they produce visible light waves by using energy given off from the transition of electrons from one energy level to another.

warming game. Illumination eats up about 19% of global power, and energy consumption for lighting is projected to grow by 60% over the next 25 years, according to the International Energy Agency (IEA). In the U.S., about 22% of the total elec-

tricity demand is used for lighting. Of this 22%, half is used in lighting commercial

or solid-state lighting would save about 4% of this total electricity, savings which would avoid building the equivalent of roughly 20 new 1,000-MW nuclear power plants. But getting people to shift

out to 6% of all U.S. electricity. Using CFLs

from the common light bulb is tough. It is hard to beat an incandescent light for low cost and ease in replacement-buy it for a half-a-buck, screw it in, flip the switch, and forget about it. Even so, Wal-Mart, Home Depot, and other big-box retailers; several utilities; and DOE have all

COMPACT FLOURESCENT LIGHTS CFLs last for 10,000-plus hours, use 20 to 25% of the energy of an incandescent light and usually cost \$2.00 to \$3.00. Despite their price, manufacturers claim a lifetime saving of at least \$50 due to reduced energy use and extended life as compared with incandescent lights.

embarked on programs to kill off the incandescent light.

Last year, Wal-Mart announced its intention to sell 100 million CFLs by the end of 2007. In October, it crowed that it had already met its goal.

Wal-Mart just didn't stick the lights on a shelf and hope, explains company spokeswoman Tara Raddohl. It marketed the CFLs under its own brand Great Value, sold them below competitors' prices, prominently displayed the new stock, set up interactive demonstrations to explain the lights' attributes, and promoted CFL sales as part of the company's new sustainable products program.

Wal-Mart even underscored its sales and sustainability programs by announcing its intention to pressure its manufacturer to reduce the small amount of mercury in CFLs. Mercury vapors in fluorescent lighting emit ultraviolet light when hit with a beam of electrons. The UV energy excites a phosphor on the inside surface of the glass

PEA-SIZED Light-emitting diodes are new to general lighting. Used mostly for traffic lights, brake lights, flashlights, and exit signs, they are making inroads into commercial and residential lighting. LEDs last decades and use less than 25% of the energy needed for incandescent lights but remain too expensive to outcompete common light bulbs in many applications.

C & E News 2007, December 3, p.46.

more costly than the traditional lightings. Mid 90 InGaN + Phosphor Mid 90 InGaN Early 90 AllnGaP Mid 80 AlGaAs Mid 70 GaP GaAs Mid 70 700 400 500 600 Wavelength (nm)

White LEDs (for solid lighting) state are available only recently (since mid 90's) because of the lack of wavelength short (blue) InGaN LED

Isamu Akasaki, Hiroshi Amano, Shuji Nakamura "For the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources" The Nobel Prize in Physics 2014

bulb is a staple of modern life. Unfortugoes to heat, not light. Billions of bulbs wasting trillions of watt-hours of electricity is always bad, but particularly so in a

environment.

contributes more than one-third of the greenhouse gases that are changing Earth's Lighting is a big player in the global-

Effect of Color Rendering Index (CRI) of Light Source

CRI of Different Light Sources

100-watt incandescent (Tungsten light bulb) 100Metal halide lamp 5400k93Daylight fluorescent lamp79Cool white linear fluorescent tube65Warm white fluorescent tube55High pressure mercury17-45High pressure sodium lamp25Monochromic Sodium D-line ~ 0

Natural daylight and any light source approximating a blackbody radiation are assigned a CRI of 100.

CRI = 50 CRI = 70 CRI = 90 CRI = 90

以LED為光源的燈具照射下,物件色彩豔麗度不足 Poor color gamut

周卓煇 工業材料雜誌 **2010**, 282, Jun, 167-173. http://sclp.lightingresearch.org/technicalGuide/terminology/cri.asp?section=1.2.6

Colors, Including White (Colorless!)

The First Demonstration of White OLEDs

1332 Multilayer White Light–Emitting Organic SCIENCE • VOL. 267 • 3 MARCH 1995 Electroluminescent Device

- A : ITO/TPD(50 nm)/p-EtTAZ(50 nm)/Mg:Ag
- B : ITO/TPD(50 nm)/Alq₃(50 nm)/Mg:Ag
- C : ITO/TPD(40 nm)/p-EtTAZ (5 nm)/Alq₃(50 nm)/Mg:Ag

300 cd/m², 0.5 lm/W @ 12 V and ~20 mA/cm²

- D : ITO/TPD(40 nm)/p-EtTAZ (3 nm)/Alq₃ (50 nm)/Mg:Ag
- $E: ITO/TPD(40 \text{ nm})/Alq_3(5 \text{ nm})/Alq_3:Nile Red (1\%, 5 \text{ nm})/Alq_3(40 \text{ nm})/Mg:Ag$
- $F: ITO/TPD(40 \text{ nm})/p-EtTAZ(3 \text{ nm})/Alq_3(5 \text{ nm})/Alq_3:Nile Red (1\%, 5 \text{ nm})/Alq_3 (40 \text{ nm})/Mg:Ag$

Three-color-composed white

1 host containing 1 dopant

Advantage and Disadvantage of White OLEDs Lighting Application

High efficiency but poor heat dissipation

(due to the small crystal size) reducing its performance to less than half

---- it is relatively expensive (epitaxial crystal growth process)

Phosphorescence materials are necessary for the outperformance of WOLED in terms of efficiency

---- Light output enhanced WOLED is also needed

Toxic content of mercury, the heavy metals in fluorescence powder, and fragile Low efficiency, high heat, fragile, short lifetime, but very cheap

Jwo-Huei Jou (周卓煇) Industrial Materials (工業雜誌) 2010, 282 (June), 167-173.

Adv. Mater. 2008, 20, 4189–4194 Highly Efficient Organic Blue-and <u>White-Light-Emitting</u> Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off**

The improved efficiency and reduced efficiency roll-off at high luminances should arise from the precise confinement of FIrpic triplet excitons within the emissive layers. Generally, triplet excitons have long diffusion lengths. Good confinement of triplet excitons within the emissive layers can be achieved

Dr. S.-J. Su, Dr. H. Sasabe Optoelectronic Industry and Technology Development Association Bunkyo-ku, Tokyo 112-0014 (Japan) E-mail: sushijian@hotmail.com

Prof. J. Kido, E. Gonmori Department of Polymer Science and Engineering, Faculty of Engineering Yamagata University 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan) E-mail: kid@yz.yamagata-u.ac.jp

High Efficiency All Phosphorescence WOLEDs 42 lm/W (with lamp lighting fixture) Power Density [W/cm²] 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 11 lm/W 26 lm/W 27 lm/W $27 \text{ lm/$

Hole transportImage: Constraint of the stateUGH4TPBIHigh triplet statePhosphorescenceElectronhole transportdopant hosttransport

Power efficiency [lm/W]

Forrest, S. R. et al Adv. Mater. 2004, 16, 624.

ITO

Metallic

Organic Glass

nature

tube efficiency

White organic light-emitting diodes with fluorescent

60~70 lm/W

¹Institut für Angewandte Photophysik, George-Bähr-Strasse 1, D-01062 Dresden, Germany.

Sebastian Reineke¹, Frank Lindner¹, Gregor Schwartz¹, Nico Seidler¹, Karsten Walzer¹, Björn Lüssem¹ & Karl Leo¹

ITO/MeO-TPD:NDP-2 (60 nm, 4%)/NPB (10 nm)/emission layer/TPBi(10 nm)/Bphen: Cs/Ag (100 nm)

Forrest, S. R. at 2003 International Display Manufacturing Conference (IDMC).

は は は は は は は は は は は は は は								
$\begin{array}{c} \begin{array}{c} & & & 2 \\ \hline 1 & & & & \\ \hline 22 & 1.01 & & \\ \hline 3 \\ \hline \begin{array}{c} & & & \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$	中文符號—— 常見氧化態——	17 氯C1 -1,1,3,5,7 ←	原子序 英文符號 氧化態	類金屬 金屬 Ar 氣體 Am 四聯		14 15 IVA VA G 6 G 夏 3 第二2,4 2 25%	16 17 VIA VIIA 7 8 9 5 2,-1 -4 -2,-1 -4 -4	10 10 10 10 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	電負度 (Allred-Rochow) 4 5 IVB VB	$ \begin{array}{c c} 38 & 3p \\ \hline 2.8 & 35.45 \\ \hline \\ $	电于组感 原子量 8 9 VIIIB	Au 回 Ma Br 液體 10 11 18	2.0 10.3 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	31 2.5 12.01 3.1 1 3 14 4 4 4 4 54 54 53 34 8 1.7 28.09 2.1 34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.18 18 20.18 18 Ar 3s ² 3p ⁴ 39.95
19 20 22 鉀 K 鈣 Ca 鈧 ¹ / ₄₅ 33,10 1.0 40.08 1.2 44.9 37 38 39	$\begin{array}{c c} 1 & 22 \\ c & & \\ \hline s & \\ 4 & \frac{3}{4}^{3} \frac{3}{3} \frac{4}{4}^{3} \frac{3}{3} \frac{4}{13} \\ 1.3 & \frac{4}{1.38} \frac{1}{15} & 50 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26 36 36 23,6 24,54 16 16 26 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3	7 28 29 9 9 10 10 3 12 1.2 1.2 453d" 1.8 63.55 1.8 46 47 47	$\begin{array}{c c} 30 & 3 \\ \hline \mathbf{$\widehat{5}$} \\ \mathbf{$\widehat{5}$} \\ \frac{2}{4s^2 3d''} \\ 1.7 & 65.39 \\ 1.8 & 69.7 \\ 1.8 & 69.7 \\ \end{array}$	$\begin{array}{c c} 32 \\ a \\ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	3 34 35 5 005 50 50 50 50 50 50 50 50 50 50 50 5	36 氪 Kr ^{2,4} ^{4s²3d¹¹4p⁴} 83.80 54
参Rb 鍶Sr 纪 Y ¹ ³ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵		b <u> </u>	釣 Ru 終 RI 3.4.8 1.2.3.4 1.4 10107 * 102.0 7.6 7	2.4 1.2 55'4d" 55'4d" 1.4 106.42 7 78	編Cd 釼 II 5 ² 44 ¹¹ 55 ⁻⁴¹ 15 114 80 8	$\begin{array}{c} 33 \\ 35 \\$	b Grand Te Grand I -2.4.6 5.6 5.4 4" 5pt 2.0 127.60 3 84 85 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	2,4,6 5s ² 4d ⁴ 5p ⁴ 131.29 86
地CS 筑Ba 鋼 系 ¹ / ₆ / ₉ 132.91 1.0 137.33 87 88 鉄Fr 鐳Ra 錒 系	66 ⁴ 4 ¹ 54 ² 1.2 178.49 1.2 178.49 1.2 178.49 1.2 178.49 1.3 180 1.4 10 编 Rf 鉛 D	a 玛 W 3不 K ^{2,3,4,5,6} ^{3,6,7} ^{3,6,7}	123.4.6.8 65.4.6.8 12.3.4.6.8 65.4.6.8 12.3.4.6.8 10.4.6.9 10.8 10.9 10.8 10.9 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$e^{1+}: d^6s^0$	$\begin{array}{c} 1 & \textbf{por PD} & \textbf{grad} \\ \hline p' & c^{2,4} \\ c^{3,5} \\ c^{3,5$	$\begin{array}{c} 1 \\ 3 \\ 6 \\ 6 \\ 6 \\ 7 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	2 6s ² 4f ⁴⁵ d ¹⁶ 6p ⁵ (222)
$ \begin{array}{c ccccc} 1 & 2 \\ 7s' & 7s' \\ 0.9 & (223) & 1.0 & 226.03 \end{array} $	73 ³ 57 ¹⁶ 68 ¹ (261) 57 3 3 3 57 57 50 57 51 51 51 51 51 51 51 51 51 51 51 51 51	(2) (263) (264 8 59 60 e 鐠 Pr 敍 Nd) (269) (268) (100) (269) (268) (100) (269) (268) (26		- : <i>d°S</i> ° 6566 鏑D	$Au^{3+}: d^8s$ 67 67 67 女 Ho 鉺 E	. <i>u s</i> 5 ⁰ Au ⁺ , Hg 8 69 70 r 銛Tm 鏡Yb	$r^{2+}: d^{10}s$
	3 3,4 65 ³ 5 ³ 65 ³ 5 ³ 1.1 138.91 1.1 138.91 89 90 鉤Ac 針T	$\begin{array}{c} 3,4 \\ 6s^{2}4f^{2}5d^{2} \\ 1,1 \\ 1,1 \\ 1,0 \\ 1,1 \\ 1,$	3 6;4;54* 1,1 (146) 1,1 150.36 93 94 錼 Np 3,4,5,6 3,4,5,6	2.3 3 6s ² 4f ² 5d ⁴ 6s ² 4f ² 5d ⁴ 1.0 151.96 95 96 街台和m 3,4,5,6	3.4 6 ⁴ 4 ⁴ 54 ⁴ 1.1 158.93 1.1 162.50 97 98 針.Bk 詳Cf 3.4	3 3 6x ³ 4f ⁴⁷ 5d ⁴ 6x ³ 4f ⁴⁷ 5d ⁴ 1.1 164.93 99 10 發色s 第 3 99 4 107 3 99 3 3 3 3 4 107 5 10 5 10 10 10	$\begin{array}{c} \begin{array}{c} 2.3 \\ 6s^2 4f^2 5a^4 \\ 1.1 \\ 0 \end{array} \begin{array}{c} 2.3 \\ 6s^2 4f^2 5a^4 \\ 1.1 \\ 0 \end{array} \begin{array}{c} 2.3 \\ 6s^2 4f^2 5a^4 \\ 1.1 \\ 173.04 \end{array}$	3 63 ³ 4/ ^{1/5} 4 ¹ 1.1 174.97 103 勞Lr 3
	7 ^{56d} 1.0 227.03 1.1 232.0 本化學元素週期表	7 ² 57 ¹ 64 ¹ 7 ² 57 ¹ 64 ¹ 14 1.1 231.04 1.2 238.0 ,由書法名家張炳煌教:	7 <i>s²5f⁴6d⁴</i> 7 <i>s²5f⁴6d⁴</i> 1.2 237.05 1.2 (244) 授,以魏碑體親撰,專	73 ³ 5f ⁵ 6d ⁴ -1.2 (243) -1.2 (247) 央雅壯麗,並勒石於淡;	75 ² 5f [*] 6d ⁴ 75 ² 5f [*] 6d ⁴ ~1.2 (247) ~1.2 (251) 工大學鍾童化學館,	75 ³ 57 ⁴ 6d ⁴ 75 ³ 57 ⁴ 6d ⁴ -1.2 (252) ~1.2 (25 承蒙淡江大學化學系 設計: 王文竹	7. ⁷ z ³ 5 ¹¹ 6d ⁴ -1.2 (258) 7 ² s ³ 5 ¹¹ 6d ⁴ (259) 概允, 授予使用權, 特 製作: 張清森,	7 ^{355f*6d'} (262) 誌謝忱 高憲章

Metal to Ligand Charge Transfer (MLCT)

- Group B element has the number of electron ≤ 10 for five d-atomic orbitals
- Effective MLCT takes place only on transition metal (group B element) complexes because of availability of partially filled d-atomic orbitals for molecular valance bonding.

6-Coordinate Octahedron and 4-Coordinate Square Planar (Re⁺, Ru⁺², Os⁺², Ir⁺³) (Pt⁺²)

Material Lifetime Status

□ Lifetime improvement by new materials very impressive.

□ Relatively Blue lifetime is too short.

		Color	Efficiency (cd/A)	Lifetime	Company
Fluorescence	R	0.67, 0.33	11	>100,000h @1000cd/m²	ldemitsu, Mitsui Chem
	G	0.30, 0.63	25	>100,000h @1000cd/m²	Idemitsu
	в	0.15, 0.15 0.13, 0.22	7 9	>12,000h @1000cd/m² >23,000h @1000cd/m²	Idemitsu
Phosphorescence	R	0.65, 0.35 0.67, 0.33	20 12	>200,000h @500cd/m² >300,000h @500cd/m²	UDC
	G	0.28, 0.63	60	>40,000h @1000cd/m²	UDC
	в	0.16, 0.29	21	17,500h @200cd/m ²	UDC
	B B	0.14, 0.15 0.16, 0.10	9 -7 	10,000h@200cd/m ² er developement@200 cd/m ²	UDC UDC

Reliability Problem

IMID/IDMC '06 Digest, 16-1, p. 305. http://www.universaldisplay.com/pholed.htm http://www.idemitsu.co.jp/denzai/el/index.html

Blue phosphorescence organic light-emitting material is not stable

 Δdd^* Electronic transition is coordination bonding repulsive and it makes the coordination complexes photochemically unstable.

 Δ The high π^* energy level, such as that of blue phosphorescence ligand, facilitates dd^* electronic transition and photo-degradation of coordination complexes

Chi, Y.; Chou, P.-T. *Chem. Soc. Rev.* **2010**, *39*, 638. Chou, P.-T.; Chi, Y. et al. *Coord. Chem. Rev.* **2011**, *255*, 2653. Chou, P.-T.; Chi, Y. et al. *Mater. Today* **2011**, *14*, 472

nature

Vol 440|13 April 2006| 908

Separate

Using stable fluorescence blue dopant instead of unstable phosphorescence blue dopant Management of singlet and triplet excitons for efficient white organic light-emitting devices

Yiru Sun¹, Noel C. Giebink¹, Hiroshi Kanno¹, Biwu Ma², Mark E. Thompson² & Stephen R. Forrest¹†

¹Department of Electrical Engineering, Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08544, USA. ²Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA. †Present address: Department of Electrical Engineering and Computer Science, Department of Physics, and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

Reduced sensitivity of η_{ext} to current density (efficiency roll-off) is another clear difference between the WOLED of this study and previous (all-phosphor WOLED).

This approach has the further advantages of a stable white balance with current, a high efficiency at high brightness due to reduced geminate exciton recombination, and an enhanced lifetime due to the combined use of a stable fluorescent blue, and long lived phosphorescent green and red, dopants in a single emissive region.

Occurrence of Exciton on Dopants

Triplet-triplet energy transfer is hardly observed for organic material, because there is hardly any organic material having ground state electron in triplet configuration.

• Major quenching mechanism of phosphorescence material

http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals/Dexter_Energy_Transfer#Introduction

234 | NATURE | VOL 492 | 13 DECEMBER 2012

Highly efficient organic light-emitting diodes from delayed fluorescence

Hiroki Uoyama¹, Kenichi Goushi^{1,2}, Katsuyuki Shizu¹, Hiroko Nomura¹ & Chihaya Adachi^{1,2}

¹Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan. ²International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan. THE 3RD GENERATION OLED MATERIALS

"Thermally activated delayed fluorescence (TADF)"

"Non-heavy matal containing organic phosphorescence materials"

Molecular structure design for small ΔE_{ST} and hence TADF

• Principle of Small ΔE_{ST} Small spatial overlap between HOMO and LUMO Singlet band-gap energy $\Delta E_{S} = E_{gap} - J + 2K$ $\Delta E_{T} = E_{gap} - J$ $\Delta E_{T} = E_{gap} - J$ $\Delta E_{T} = \Delta E_{S} - \Delta E_{T} = 2K$ (Exchange interaction integral) Triplet band-gap energy $2K \propto \int \psi_{HOMO}(r) \psi_{LUMO}(r) d^3r$ M. Klessinger and J. Michl Excited States and Photochemistry of Organic Molecules, VCH Publishers, New York 1995. Design Rule for Small AEst Theoretically $\Delta \boldsymbol{E}_{ST} = 2\boldsymbol{J} \qquad J = \int \int \phi_H(1)\phi_L(2)\frac{1}{r}\phi_H(2)\phi_L(1)d\tau_1 d\tau_2$ J : Exchange integral energy between HOMO/LUMO of emitter $\phi_{\rm H}$: Wave function of HOMO Wave function of LUMO
 House function of LUMO
 House function
 Alignment
 Alignm

A small ΔE_{sT} (or exchange energy, J) can be achieved by spatial separation of the HOMO and LUMO of the emitter molecule, because the exchange energy decreases with increasing HOMO/LUMO separation distance. Picture taken from the lecture by Chihaya Adachi in ISNA-15 (15th International Symposium on Novel Aromatic Compounds) 2013, Taipei, Taiwan.

Twisted or non π *-conjugated !*

Three TADF OLEDs

A limited spatial overlapping between ψ_{HOMO} and $\psi_{LOMO} \Rightarrow small \Delta E_{ST}$ (~0.1 eV)

CC2TA: Lee, S. Y.; Yasuda, T.; Nomura, H.; Adachi, C. *Appl. Phys. Lett.* **2012**, *101*, 093306. PIC-TRZ: Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. **2011**, 98, 083302

4CZIPN: Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.

NATURE PHOTONICS | VOL 8 | APRIL 2014 | 326

ARTICLES PUBLISHED ONLINE: 2 MARCH 2014 | DOI: 10.1038/NPHOTON.2014.12

photonics ²Interr

¹Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, ²International Institute for Carbon Neutral Energy Research, Kyushu University,

Efficient blue organic light-emitting diodes

Host Material T_1 : 3.30 eV

employing thermally activated delayed Qisheng Zhang¹, Bo Li¹, Shuping Huang¹, Hiroko Nomura¹, Hiroyuki Tanaka¹ and Chihaya Adachi^{1,2*}

SUMMARY

OLED flat panel display

In 2014, LG drops the price of 55" OLED TV to 3750 USD (it

was ~10,000 USD in 2013)

