Self-Assembled Monolayers and Multilayers

Structures and Applications Yu-Tai Tao

Outline

- Basic Structures
 - Langmuir Monolayers
 - Self-Assembled Monolayers (SAMS)

→Carboxylic acids on oxide surfaces

- → Alkylsilanes on hydroxylated surfaces
- → Organothiol on coinage metals
- Mixed monolayers
- Mutilayers
- Monolayer-protected clusters(MPCs)

- Applications of SAMs
 - Soft lithography
 - Nonlinear Optical (NLO) materials
 - Molecular electronics

Figure 1. A monolayer of molecules in a two-dimensional gas (top), and in the compressed form (bottom).

Figure 2. A scheme of surface pressure (π) vs. area per molecule (Å) for stearic acid on 0.01M HCl.

Amphiphiles: A molecule that is insoluble in water, with one end that is hydrophilic and therefore preferentially resides in water, and the other end is hydrophobic and preferentially resides in air.

Very weak (no film)	Weak (unstable)	Strong (stable w C16)	Very strong (C16 cpd dissolve)
Hydrocarbon	-CH ₂ OCH ₃	-CH ₂ OH;	-SO3-
		-C ₆ H ₄ OH	
-CH ₂ I	$-C_6H_4OCH_3$	-CN;	-SO ₄ -
		-CH ₂ COCH ₃	
-CH ₂ Br	-COOCH ₃	-COOH;	-C ₆ H ₄ SO ⁴⁻
		-NHCONH ₂	
-CH ₂ CI		-CONH ₂	-NR ₄ +
-NO ₂		-CH=NOH	

Table 1

Figure 4. A crosssection view of LB film deposition in the KSV 5000 trough.

Step 1

Step 2

The deposition cycle in the KSV 5000 trough.

Step 3

Step 4

Figure 5. Y-type Langmuir-Blodgett film deposition.

Figure 5-1. (a) X-type deposition. (b) Z-type deposition.

L-B films provide a way to control the packing density, molecular separation and position in a monolayer.

S

 Self-assembly is the spontaneous organization of molecules or objects into stable, well-defined structures by non-covalent forces.

 Self-assembled monolayer (SAM) is the special case in which long-chain, functionalized molecules self-organize at a solid surface after chemisorption.

Substrates and Ligands that form SAMS.

Substrat e	Ligand or Precursor	Binding	Substrate	Ligand or Precursor	Binding
Au	RSH, ArSH (thiols)	RS-Au	SiO ₂ ,glass	RSiCl ₃ , RSi(OR') ₃	Siloxane
Au	RSSR' (disulfide)	RS-Au	Si/Si-H	(RCOO) ₂	R-Si
Au	RSR' (sulfides)	RS-Au		(neat)	
			Si/Si-H	RCH=CH ₂	RCH ₂ CH ₂ Si
Au	RSO ₂ H	RSO ₂ -Au			
Au	R ₂ P	R₂P-Au	51/51-01	RLI, RIVIGA	R-51
	3.		Metal	RCOOH	RCOO-
Ag	RSH, ArSH	RS-Ag	oxides		MO _n
Cu	RSH, ArSH	RS-Cu	Metal	RCONHOH	RCONHOH
Pd	RSH, ArSH	RS-Pd	oxides		Mo _n
			ZrO ₂	RPO ₃ H ₂	RPO ₃ ²⁻ …Zr ^{IV}
Pt	RNC	RNC-Pt	2		
GaAs	RSH	RS-GaAs	In ₂ O ₃ /SnO ₂ (ITO)	RPO ₃ H ₂	RPO ₃ ²⁻ M ⁿ⁺
InP	RSiCl ₃ ,RSi(OR') ₃	RS-InP		1	1

• Advancing contact angles θ_a of water and hexadecane on mono-layers or representative thiols on gold.

Thiol	Θ _a (H2O) ^(o)	$\Theta_{a} \ (C_{16}H_{34})^{(o)}$	Thiol	Θ _a (H2O) ^(o)	$\Theta_{a} \ (C_{16}H_{34})^{(o)}$
$HS(CH_2)_2(CF_2)_5CF_3$	118	71	HS(CH ₂) ₁₆ OCH ₃	75	41
HS(CH ₂) ₁₇ CH ₃	112	47	HS(CH ₂) ₁₀ CO ₂ CH ₃	67	28
HS(CH ₂) ₁₇ CH=CH ₂	107	39	HS(CH ₂) ₁₁ CN[b]	63	<5
HS(CH ₂) ₁₉ Br[a]	97	<5	HS(CH ₂) ₁₀ CONH ₂ [13	<5
HS(CH ₂) ₁₄ OCOCF ₂ [96	62	C]		
d]		02	HS(CH ₂) ₁₅ CO ₂ H	<10	<5
HS(CH ₂) ₁₉ F[a]	95	<5	HS(CH ₂) ₁₁ OH	<10	<5
HS(CH ₂)OCH ₃	83	<5	Table 3.		

Infrared Reflection Absorption Spectroscopy (IRRAS)

 α : angle between \tilde{E}^{p} and the direction of transition dipole

<u>Figure 11.1.</u> Reflection-absorption IR spectra for a monolayer of n-alkanoic acid, $CH_3(CH_2)_mCOOOH$ on AI. (a) High-frequency region. (b) Low-frequency region.

<u>Figure 12.</u> Reflection-absorption IR spectra for a monolayer of n-alkanoic acid, $CH_3(CH_2)_mCOOOH$ on Ag. (a) High-frequency region. (b) Low-frequency region.

Figure 13. Ellipsometric thickness of the n-alkanoic acid monolayer as a function of chain length. Dashed line represents the calculated thickness for normal orientation.

<u>Figure 13.1</u> Contact angle on a monolayer surface as a function of chain length of the acid: (Δ)hexadecane, ()bicyclohexyl, ()water.

General Reaction Mechanism

- RCO₂⁻(2-D,c)/M[oxide]/M + HCI(g) ---> RCO₂H*(2-D,c)/M[Cl⁻]/M
- RCO₂H*(2-D,c)/M[Cl⁻]/M-----> RCO₂H*(3-D,c)/M[Cl⁻]/M
- RCO₂H*(3-D,c)/M[Cl⁻]/M + O₂(g) ---- > RCO₂H*(3-D,c) / [oxide] /M
- RCO₂H*(3-D,c)/M[oxide]/M -----> RCO₂⁻(2-D,c)/M[oxide]/M

Figure 15. n-hexadecanoic acid monolayer on AI before and after HCI exposure

Figure 16. H₂S Induced Reorganization of Self-Assembled Monolayer of n-Alkanoic Acid

OR

Figure 17.1

Figure 17.2

Figure 18.1 Restoration of monolayer of eicosanoic acid on Ag surface at 38°C, completed in 90 min.

Figure 18.2 Restoration of monolayer of 4-hexadecyloxybenzoic acid on Ag surface

Y.T.Tao, S. Pandiaraju, W.L.Lin, L.J. Chen Langmuir, 14, 145(1998).

Adsorption of Alkyltrichlorosilane on Hydroxylated Surface

Alkanethiol on gold and silver surfaces

Why Alkanethiolate SAMs on Au(111) and Ag(111) are Different?

1 X 3 assembly at 4.2-Å spacing (left), representing alkanethiolate on Ag(111), and at 4.97 Å-spacing (right), representing alkanethiolate on Au(111).

5.0

5.2

4.8

Spacing (A)

-22

4.0

Best interaction energy (for optimal inplane tilt) as a function of the spacing (d).

Ulman, A.; Eilers, J. E.; Tillman, N. *Langmuir*, *5*, 1147(1989).

Why are Alkanethiolates on Au(111) and Ag(111) Different?

Facts:

- 1. The nearest-neighbor distance for Au(111) and Ag(111) lattices are similar (2.88 and 2.89 Å, respectively.)
- 2. lodine forms a $(\sqrt{3}\times\sqrt{3})R30^\circ$ structure on Ag(111), with the iodine atoms occupying the hollow sites.

Difference between of alkanethiolate SAMs on Au(111) and on Ag(111) must result from an interplay of chemisorption and chain-chain interactions:

- 1. Silver is more reactive than gold, it forms an oxide spontaneously, its oxidation potential is 1.7 eV lower, and its work function 0.6 eV lower.
- 2. Gold and silver differs due to relativistic effects. The peak-to-valley roughness at their [111] lattices, 6.0 kcal mol⁻¹ for Au(111) and only 3.3 kcal mol⁻¹ for Ag(111). Site selection is more effective for Au(111).

Why are Alkanethiolates on Au(111) and Ag(111) Different? - Continued

- 3. Because in Ag(111) the energy difference is smaller than in Au(111), adsorption at an on-top site in the former may compete with that at the hollow site.
- 4. Only certain combinations of chain-chain separation and tilt angles permit truly effective packing of alkyl chains. The most effective packing is a trigonal lattice with spacing near 4.4 Å with a molecular axis normal to the surface. This distance (4.41 Å) was found for methanethiolate on Ag(111); however, for longer alkyl chains the distance of 4.6 Å has been reported. The second most effective has a spacing near 5.0 Å and the molecular axis tilted 30°, such that the distance between the chains is, again, 4.4 Å and the fit of bulges into depressions is again perfect.
- 5. Crowding more molecules per unit surface area will result in both more chemisorption energy and VDW attraction for the entire system simply because there are more chains involved. This is a lot of energy, since the possibility of adsorption at on-top sites means that in SAMs of thiolates on Ag(111) there are 26% more chains per unit area than on Au(111) on-top sites.

<u>Figure 22.</u> AFM image of uncoated, epitaxially grown Au(111) on mica covering $3.02 \text{ nm}^*3.02 \text{ nm}$. The image was collected in a constant- force mode and was lightly filtered using an XY spectrum filter. The average nearest-neighbor spacing represented by line a equals 0.29 ± 0.03 nm, and the next-nearest-neighbor spacing represented by line b is 0.05 ± 0.04 nm.

C.A. Alves, E.L Smith, M. D. Porter, J. Am. Chem. Soc. 114, 1223(1992).

Schematic illustration of the idealized structure for the monolayer formed from the chemisorption of CF₃(CF₂)₇(CH₂)2SH at Au(111). The tilt(θ) of the perfluorocarbon chains in the side view (A) is 160 with respect to the surface normal. The corresponding (2*2) adlayer structure is depicted in the top view (B). The spacings between adsorbates is 0.58 nm (c) and 1.0 nm (d)

(A) An AFM image covering 3.0nm*3.0nm of $CF_3(CF_2)_7(CH_2)2SH$ chemisorbed at Au(111). The nearestneighbor and next-nearest-neighbor spacings are 0.58 ± 0.02 and 1.01 ± 0.02 nm, respectively, as denoted by the lines a and b on the image. This image is unfiltered. (B) An AFM image covering 3.0nm*3.0 nm of decanethiolate at Au(111). The nearest-neighbor and nextnearest-neighbor spacings are 0.50 ± 0.02 and 0.91 ± 0.04 nm, respectively. This image was low pass filtered.

C.A. Alves, E.L Smith, M. D. Porter, J. Am. Chem. Soc. 1992, V. 114 (4) P. 1224

• The packing density (x10-10mol/cm²) and the desorption potential (mV) in parenthesis of aromatic-derivatized thiols on evaporated Au using electro-chemically reductive desorption method.

X=	I	II	111	IV
Н	4.4+0.4(-848)	8.1+0.3(-921)	6.1+0.7(-926)	8.0+0.3(-1091)
OCH ₃	5.1+0.3(-921)	8.1+0.3(-939)	5.2+0.8(-907)	8.0+0.1(-1087)
OC ₁₆ H ₃	6.3+0.6(-1215)	8.0+0.4(-1182)	7.8+0.3(-1305)	7.5+0.3(-1197) ×

Au-S-C₁₆H₃₃ 7.8+0.1(-1130) x

SH

ŚН

(a) Top view of proposed structures of monolayers of I and III on the $(\sqrt{3}^*\sqrt{3})$ R30° overlayers of Au(111) and Ag(111) surfaces. The arrow indicates the tilting direction of alkyl chain. (b) Side view of monolayer of I along a line connecting the nearest neighbors. (c) Side view of monolayer of III. (a) Top view of proposed structures of monolayers of II on the $(\sqrt{3}^*\sqrt{3})R30^\circ$ overlayers of Au(111) and Ag(111) surfaces. The arrow indicates the tilting direction of alkyl chain. (b) Four confirmations for head group. (c) Side view of monolayer along a line connecting the nearest neighbors.

H₂S Induced Reorganization of Self-Assembled Monolayer of n-Alkanethiol Derivatives

Tao, et al., J. Am. Chem. Soc., 122, 7072 (2000)

Mixed Monolayer System

Figure 27. Adsorption from a mixture of components 1 and 2.

By exchange

Figure 27.1 A preformed monolayer of component 1 dipped in a solution of component 2.

Structure of Mixed Monolayer

Type A: Two components with same chain length

Figure 28.

Type B: Two components with different chain length

(1) Longer polar component

Figure 28.1

(2) Shorter polar component

Figure 28.2

Mixed monolayer of p-terphenylcarboxylic acid and hexadecanoic acid

Comparison of surface composition and solution composition for mixed layer formation of p-terphenylcarboxylic acid and hexadecanoic acid.

IRS Spectra of Mixed Monolayer of pterphenylcarboxylic acid and hexadecanoic acid

IRS Spectra of H₂S-exposed Mixed Monolayer of pterphenylcarboxylic acid and *n*-hexadecanoic acid

CH₃(CH₂)₁₅SH/CH₃OCO(CH₂)₁₅SH Mixed SAMs

OR

HS(CH₂)₁₅CH₃/HS(CH₂)₁₅COOCH₃ Coadsorption

Dispersive interaction Polar interaction Dispersive interaction Polar interaction Dispersive interaction Polar interaction

(Left) A scanning tunneling microscope image showing a 500*390 Å² area of a selfassembled monolayer of a mixture of 20% $CH_3(CH_2)_{15}SH$ and 75% $CH_3O_2C(CH_2)_{15}SH$ on Au. Note the molecular void defect (blue) in the $CH_3(CH_2)_{15}SH$ domain in the lower right area of the image.

(Right) A schematic of the image shown in the left. The domains attributed to the methyl-terminated thiolate are outlined and labeled by M. The region containing a molecular void defect is labeled M'. The single methyl-terminated molecule domains are enclosed in squares.

Stranick, et. al. J. Phy. Chem. 98, 7641(1994).

Two sequential scanning tunneling microscope images showing a 500*310 Å² area of a self-assembled monolayer os a mixture of 25% $CH_3(CH_2)_{15}SH$ and 75% $CH_3O_2C(CH_2)_{15}SH$ on Au. The color scale and tunneling conditions are the same as in previous slide. The right image was recorded 37 min. after the left image. Two arrows indicate regions where methyl- and methyl ester-terminated thiolate molecules have exchanged, leading to coalescence of domain of methyl-terminated thiolate molecules.

HS(CH₂)₁₆H/HS(CH₂)₁₅COOCH₃ Mixed Monolayer

Restoration of Monolayer of p-terphenylcarboxylic acid/hexadecanoic acid at 33°C

$HC \equiv C(CH_2)_{14}SH/C_{12}H_{25}SH$

OR

Alkyl Monolayer on Silicon Surface (Chidsey, 1993)

Stable to boiling H_2O , chloroform, acidic, basic solution,

Multilayer Formation with Polar Order

Multilayer Build-up by Self-assembly

Monolayer Protected Clusters (MPC)

AuCl₄⁻(toluene) + RSH
$$\longrightarrow$$
 (-Au^ISR-)_n(polymer)
(-Au^ISR-)_n + BH₄⁻ Au_x(SR)_y
M. Brust, et al J. Chem. Soc. Chem. Commun. 1994, 801.

The surface functional group can be replaced by another functional thiol.

Characteristics of the Nucleation-Growth-Passivation Process:

- 1. Larger thiol: gold mole ratios give smaller average MPC core sizes.
- 2. Fast reduction and cooled solutions produce smaller, more monodispersed MPCs.
- 3. Quenching the reaction immediately following the reduction produces smaller core sizes.
- Core Metals: Au, Ag, Au/Ag, Au/Cu, Au/Ag/Cu, Au/Pt, Au/Pd, Au/Ag/Cu/Pd
- Ligands: Alkanethiols, disulfides, ω-functionalized thiols, arenethiols...

